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A new method for single pile settlement prediction and analysis

W. G. K. FLEMING*

A method is presented for the analysis and predic-
tion of single pile behaviour under maintained
loading, based on_the use of hyperbolic functions to
describe individual shaft and base performance.
When _these_functions are combined, and._elastic
pile shortening is added by a relatively simple pro-
cedure, an accurate model is obtained. By a simple
method of linkage, which relies on the fact that a
hyperbolic function of the type described requires
only definition of its origin, its asymptote and
either its initial slope or a single point on the func-
tion, conventional ‘elastic’ soil parameters and ulti-
mate loads may be used to describe total
performance. By means of the changing slope of
such functions, this method also reflects well in the
increase of soil moduli at low strains. Examples
are given from back-analysis of some fully instru-
mented and other cast-in-place pile test results, to
demonstrate that good agreement with all recorded
features can be achieved using the model. Exten-
sive use has confirmed its validity for maintained
load tests in a wide range of soils. Provided that
piles have been made to settle sufficiently under
load, so that the latter part of each relationship is
well defined beyond the stage where shaft friction
is close to a constant value, all the main relevant
parameters can be determined with good accuracy
in back-analysis. The derived data may then be
used to predict behaviour of piles in similar cir-
cumstances on other sites or of piles of different
diameter in the same soils. Subject to the condi-
tions described in the Paper, the method has far-
reaching implications for design, construction and
testing technigques.

L’article présente une méthode pour analyser. et
prédire le comportement d’un pieu unique sous
chargement continu. Elle est basée sur ’emploi_de
fonctions hyperboliques pour décrire les per-
formances du fiit isolé et de la pointe. Lorsque ces
fonctions sont combinées et qu’on y ajoute le
raccourcissement élastique du pieu il en résulte un
modéle précis. Par une méthode trés simple de con-
nexion il est possible d’employer des paramétres
¢élastiqnes conventionnels du sol et des charges
limites de rupture pour décrire les performances
totales. Cette méthode refiéte bien I’accroissement
des modules du sol avec basses contraintes. Des
examples sont présentés pour démontrer que
Pemploi du modéle s’accorde bien avec toutes les
données enregistrées. Son emploi frequent a confir-
mé sa validité pour des essais a chargements con-
tinus pour une large gamine de sols. Pourvu que les
pieux soient assez enfoncés sous chargement, on
trouve que tous les parameéires principaux impor-
tants peuvent étre détermines avec une précision
satisfaisante par analyse rétrospective. Alors il est
possible d’employer les données dérivées pour pré-
dire le comportement des pieux sous des circon-
stances analogues a d’autres emplacements ou bien
de pieux de diamétre difféerent dans les mémes sols.
Cette meéthode a des implications d’une grande
portée pour les études, la construction et la tech-
nique des essais.
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INTRODUCTION

In his Rankine Lecture, Poulos (1989) catalogued
the available methods for predicting pile per-
formance under load, ranging from simple to
complex methods using finite element solutions.
He drew attention to the versatility of some of the
more complex methods, but also demonstrated
that in the realm of pile performance prediction,
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the result is only as good as the input informa-
tion. The sophisticated input data required are
not normally available from conventional site
investigation, and there would therefore seem to
be a place for a simpler approach that could
readily be correlated with site experience and
mainly used parameters that most geotechnical
engineers would recognize and understand.

Chin (1970, 1972, 1983) has made the method
of plotting the behaviour of both footings and
piles according to the hyperbolic method well-
known. This method has been widely adopted,
although it has not been linked with soil param-
eters, but rather used as a method for defining
ultimate loads.
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Fellenius (1980) has discussed the Chin method
and other methods for defining ultimate loads; he
and others have drawn attention to the fact that
the Chin method appears to overpredict.
However, there is little doubt that in most cases,
according to the plotting method, linear functions
represent pile performance very well.

The method is expressed by Chin (1970, 1972)
in the form A/P = mA + C,, where A is pile head
settlement, P is applied load and C, is a constant.
Thus if A/P is plotted against an abscissa of A, a
linear plot is obtained and the inverse slope 1/m
gives an asymptotic limiting value of P. This,
according to the evidence presented by Chin, is
true of piles that carry most of their load by shaft
friction, and also of footings and piles that carry
most of their load in end bearing. A typical
relationship between pile head settlement A and
settlement divided by load A/P is shown in Fig. 1.

Many such relationships for piles are bilinear:
it has been suggested by Chin & Vail and has
often been accepted that the first part (A) of the
relationship “represents shaft friction while the
second part (B) represents total load. This cannot
be strictly true because of the nature of hyper-
bolic functions, but it can easily be accepted that
individually shaft and base performance are of
hyperbolic form.

It is interesting to speculate as to why the
simple hyperbolic function should be important
in the matter of foundation settlement. Chin
(1983) suggests that mobilization of stress in a soil
with increase of strain is a function of an increas-
ing number of effective soil contacts rather than
of a general increase of intergranular stress on a
constant number of grain contacts. He suggests
that intergranular stress in a flocculated clay, for
example, is virtually constant and independent of
the applied or effective stress. On this basis he
derives a hyperbolic function for the stress—stain
relationship. It may be visualized that when a soil
is under compressive stress, the load is transmit-
ted by internal columnar grain structures and
that as these reach limiting loads, more and more
columns begin to support load, each having

Settlement/load A/P

A

Settlement A

Fig. 1. Relationship of settlement and settlement/load

approximately the same yield load. This is an
interesting hypothesis, and appears plausible.

In this Paper a means of analysis and fore-
casting pile settlement based on the simple hyper-
bolic function is developed. It is first necessary to
consider the obvious criticisms of the use of
Chin’s method in practice so that items that affect
performance and are not normally hyperbolic can
be separated from the general soil functions.

Two obvious features lead to the criticism that
the method overpredicts ultimate load. First, by
the nature of the function, the slope of the plotted
lines represents an asymptote in each case. Most
definitions of ultimate load are arbitrary, as Fell-
enius (1980) shows, being based either on a settle-
ment related in some way to diameter or on
geometrical manipulation. Most theoretically
satisfactory bearing capacity coefficients are
based on soil mechanisms that would automati-
cally imply asymptotic values. However, asymp-
totic load values will always exceed those
determined arbitrarily. The second distorting
influence is the elastic shortening of the pile body,
as can easily be demonstrated by making realistic
estimates of shortening and removing this item
from the settlement before plotting the functions.

It must also be borne in mind, that some
driven piles, in particular, show the characteristic
of set-up, which means that after installation their
frictional capacity increases and on subsequent
loading it declines at large strains. This may also
be true of certain piles in soft sensitive alluvial
deposits, but there is little evidence of it in cast in
place piles-inoverconsolidated soils at least up to
movements of the order of 5% of pile diameter.
Within this range the stated hyperbolic function
appears to hold true. Interestingly, Burland &
Twine (1988) suggest that residual strengths apply
along cast in place pile shaft surfaces in clay, and
that under maintained loading conditions there is
no decline in load following a peak ‘value, this
being a feature of a dynamic context, for example
in CRP tests.

SETTLEMENT PREDICTION

Settlement and differential settlement are
perhaps the most important features in pile
design, and the problem is complicated by struc-
tural stiffness, pile load redistribution, construc-
tion techniques and group effects. Settlement
control, however, receives the most attention and,
if the performance of a single pile cannot be ade-
quately forecast, it poses something of a dilemma
as many specifications include numbers with
which it is difficult to comply without some
understanding of the mechanisms involved. For-
tunately, most specifications are not concerned
with group settlements, although the calculation
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methods based on elastic theory are of consider-
able help in this context. The use of empirical
group load reduction factors is now generally dis-
credited, as they have no basis apart from geo-
metrical manipulation.

Cementation Piling Foundations Ltd has for
many years addressed the problem of pile settle-
ment by simple means, particularly for cases in
which the design load of a pile exceeds the ulti-
mate shaft friction, using the methods set out by
Fleming & Thorburn (1983). It would be useful,
however, to develop a function that could charac-
terize pile load/settlement behaviour, and the
hyperbolic function offers a key to this. Given
that piles in general behave according to such a
function with respect to shaft friction and end
bearing, a method can be derived relatively
simply by relating the performance to a contin-
uous function which can mostly be linked to con-
ventional soil parameters.

DEVELOPMENT OF BEHAVIOURAL MODEL

In Fig. 2, which represents a typical plot as
used by Chin in considering a truly rigid pile, the
slope of A represents ultimate shaft friction and
the slope of B is the ultimate end bearing as
defined by vertical asymptotes to the load/
settlement relationships. Thus ultimate shaft fric-
tion is given by

As

Us = (agPy — K 0

where Ag represents settlement of the shaft head
at any load Pg, and K is the intercept on the
horizontal axis. Equation (1) can be rearranged to

-4 Settlement/ioad A/P

Settlement A

Individual shaft and base performance

Fig. 2. Individual shaft and base performance

give

KsUgP
Ag =-S5 (¥}
Us — P

Similarly, base performance can be expressed as

_KyUyPy
Ay = o5t ®

where the load Py corresponds to a settlement
Ag. For a rigid pile, Ay is movement at the pile
head.

Shaft friction and settiensent

There is substantial evidence that the settle-
ment of a pile shaft for a given load is a direct
function of the diameter Dg (see for example the
finite element studies carried out by Randolph &
Wroth (1982)). Similarly, a considerable number
of studies seem to indicate that K¢ is an inverse
function of Ug, i.e. settlement for a given load
decreases with increasing ultimate shaft load.
Thus, from

M Dy
Kg=—3=8 )
S Us

it is found that Mg becomes a dimensionless flex-
ibility factor in the nature of an angular rotation,
and equation (1) can be rewritten as

hyperbohc function g ;
Randolph (1991) -peimts out .that Mg is the
equivalent of {t5/2G in the notation of Randelph
and Wroth (1978, 1982) where { is In(r/r.), ' 1S
the radius at which soil deflexions become van-
ishingly small, r_ is the pile radius, g is the shear
stress at the plle surface ,and G is the soil shear
modulus. M is also di omdess in this nota-
tion. Because G/tg lies-in the mnge 500-2000 in
the findings of Randolplr & Wroth, Mg would be
expected to have values in the range 0-001-0-004.

Base load and settlement

As far as base performance is concerned, the
settlement of a circular footing is commonly
expressed as

A= —§~ Dy(l — v))f, ©

&1 a



414 FLEMING

where Ey is the modulus of the soil under the
footing, g is the applied base pressure, Ay is the
base settlement, Dy is the diameter, v is Poisson’s
ratio and f, is a standard settlement reduction
factor related to foundation depth. For increasing
load on a given foundation this means a linear
relationship between load and settlement.

To evaluate the secant modulus Eg from a real
load/settlement relationship in a standard way, it
is usual to take its value at one quarter of the
ultimate stress in non-linear functions. Thus in
the case of piles equation (6) can be simplified to

A _ 060754D,

b= ™

by attributing values of, say, v=03 and f, =
0-85.

If at a load of Uy/4, equations (3) and (7) are
set equal, the coefficient K can be determined for
the point where the hyperbolic function and the
linear elastic functions intersect. Thus

_ 058 06
P DyEy  DyEy

®

This value of Ky can now be used to determine
the whole of the hyperbolic function. Equation (3)
can therefore be rewritten as

0-6U, Py

— e B B 9
® DyEg(Ug — Py) ©)

This allows an expression for the total load/
settlement relationship to be formulated. Note
that within a hyperbolic function of this type it is
necessary only to define the origin, the asymptote
and one point (e.g. the E,; point) in order to
define the whole function. Of course, the secant
modulus value in such a function is highest at the
origin and falls linearly with increasing load, to
zero at the asymptote; this accords with general
experience of high E values at low strain.

TOTAL SETTLEMENT OF A RIGID PILE

If a pile is purely rigid, then obviously the
loads taken by the shaft and base can be added to
give a total load at any given settlement A

As=Ag = Aq (10)
and the total load is
Py = Py + Py (11)

The shaft load is available from equation (5), and
can be written

UsAs

Pg=—-=35
ST MgDg + Ag

(12)

and the base load is available from equation (9)

p Dy EgAg Uy
P 06Uy + DyEgAg

(13)

These terms may be expressed more simply and
handled in a general form by writing the expres-
sion for total applied load at a given settlement
and inserting the total pile head settlernent value
Ay

alA; bA;
Pr= + 14
T+ Ar d+eA; (19)

where a=Ug, b=DgEgUy, ¢ =MsDy, d=
0-6Ug and e = Dy Ey.

To solve for A given any specific value of Py,
equation (14) has to be rearranged in the form

(ePr — ae — b)A? + (dPy + ecPy

—ad — bo)Ar + cdP =0 (15)

If for convenience we let ePr —ae — b =f, dP;
+ ecPr — ad — bc = g and cdPy = h, this yields
the solution

N 2V Uik L)

T 2f

Only the positive resulting value of Ay is used.

(16)

ELASTIC SHORTENING

The elastic shortening of a pile shaft under load
is clearly additional to settlement calculated by
the above method, and must depend on the rela-
tive development of load transfer between the pile
and soil along its length, as well as on any free
length or near friction-free length at the pile head,
and on the load being transferred at the pile base.
To work out the elastic shortening accurately
would require a considerable knowledge of the
load transfer flexibility Mg along the shaft, and
would involve an iterative method, whereby the
pile was divided into elements and compatibility
of strains was studied at given levels. This would
make for a somewhat cumbersome procedure,
involving the complication of varying soil strata
and thickness.

It is suggested that a simplified method can be
used: a study of some piles in which elastic short-
ening has been measured indicates the following
method to be sufficiently accurate for most pur-
poses. The simplified method is indicated in Fig.
3, which considers shortening in three stages

(a) a free or low friction length extending to a
distance L, from the pile head

(b) alength Ly over which friction is transferred

(c) the whole pile shortening as a column after
the ultimate shaft friction has been reached.
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Fig. 3. Simplified method of calculating elastic short-
ening

The first of these elements is easily considered;
the shortening A, is given by
_ 4’ L,P;
' n DGEc

17

where E. is Young’s modulus for the pile material
in compression.

The second stage represents the elastic_short-
ening which takes place during load increase up
to the stage when ultimate shaft friction has been
mobilized. For uniform friction the elastic short-
ening will, at maximum, be equivalent to that of a
column of length 0-5Lg. However, as Mg and K¢
are both important elements in determining the
early slope of the load/settlement relationship,
and friction development takes place more
rapidly at the top of this section than at its base,
it seems preferable to use an effective column
length slightly lower than 0-5Lp. A series of
elastic shortening comparisons with the present
method have been carried out using the Ran-
dolph and Wroth method in the form of the
PIGLET computer program, based on an elastic
soil of uniform stiffness. These indicate an effec-
tive column length for this case of 0-4L;. Like-
wise, for a uniformly increasing soil stiffness and
strength, from zero at the top of this length, full
mobilization of friction would lead to an effective
column length of 0-67Lg. The elastic method sug-
gests that in the early stages of loading an effec-
tive length of 0-47L is appropriate. For a typical
London clay case, where strength increases lin-
early from a finite value at the top of the section,
an equivalent column length of 0-45L is a reas-
onable good approximation.

The effective column length appears to be
between 70-80% of the distance from the top of
the friction transfer length to the centroid of the
friction load transfer diagram. If the coefficient
applied to the friction length to give the effective
column length is denoted as K, then shortening

can be expressed as

4Ky LgPy

= 18
n  Dg’E. (18)

2
When the applied load P; exceeds the ultimate
shaft load Usg, additional load causes shortening
of the full length L; so that it may be treated
simply as a column carrying the excess load, and
the shortening of Ly becomes

_ 4P - UL,

A
*Tn Dg?E

(19)
As total elastic shortening Ag is the sum of the
elemental shortenings being brought into play,
for loads Py up to the ultimate shaft load Uy

_4PLy+KelLy)

20
n Dg*Ec (20)

E

and for greater loads

4 1
AE@——; 'b“‘sz"‘E: [Pr(Lo + Lg) — Le Ud(1 — Kg)]

@1

By the combination of equations (16) and (20) or
(21) as appropriate, the total settlement of a pile
for any load up to the ultimate load may be cal-
culated, including a good estimate of elastic
shortening.

A computer program has been written to facili-
tate rapid calculation, and given the name
CEMSET. Help screens have been established to
give guidance in the choice of numbers for
various types of pile and soil.

APPLICATION OF THE METHOD

Having accepted that the hyperbolic function
closely represents the load/settlement behaviour
of piles, the method described is very simple, and
its importance lies in its ability to link the func-
tion sensibly to well-recognized parameters. It
suggests that one should use the asymptotic defi-
nition of failure instead of other arbitrary defini-
tions which are confusing and difficult to
interpret consistently. It also implies strongly that
the application of any factor to ultimate load
alone as a means of controlling deformation is
crude and illogical.

The normalized plots for a wide range of soils,
from the softest in which piles are likely to be
used to very dense soils and soft rocks, are shown
in Figs 4 and 5 for both shaft friction and end
bearing as calculated. These show the familiar
characteristics of pile load/settlement relation-
ships in the rigid pile case. Note also. that the
shape and mathematical basis of the function
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Fig. 4. Normalized plot of shaft friction settlernent relationships
for a range of soils from soft to very stiff (Mg = 0-005-0-0005)

imply that low strain moduli are always one-third
higher than the E, 4 value.

It will be observed that, for example, the soil
modulus below a pile base would be of the order
of say 50000 kN/m? for a stiff overconsolidated
clay with an undrained shear strength approach-
ing 200 kN/m?, giving-an Egp/q, ratio of ~ 30,
whereas the shaft flexibility factor Mg would be
~0:002. A simple comparison of the related
curves shows that they are very different in char-
acter at this level of soil strength. This means
that, if in a pile test the pile has-been pushed suffi-
ciently far to ‘mobilize_a-reasonable part of the
end bearing curve, the equations may be used to

separate and back-calculate all the main param-
eters for the pile. As the base reaction stiffens and
end bearing becomes more ‘brittle’, there is a
remote possibility that the shaft and base charac-
teristics may become too similar to separate
mathematically in a reliable way. Only a very
small proportion of the total range of piles ‘are
likely to be in this category.

If Figs 4 and 5 are used to judge pile per-
formance without reference to the formulae, care
should be taken that the scales are similar to
those used in the diagrams. The graphs, however,
are fully dimensionless and general given the con-
ditions attached to equation (7).
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Fig. 5. Nermalized plot of end bearing/settlement relationships for a range
of seils feom soft to very stiff: ¢, = ultimate base pressore (kN/m?); E, =
moduley of soil below-base; Ey/g, = 5-200; the latter value corresponds to

soft rock-materinls
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It should be stressed that good quality test data
are required for accurate mathematical separation
during back-analysis. Tests carried out com-
mercially are often good enough to give reason-
able indications of the various parameters, but
any improvement in test quality leads to much
greater accuracy. Quality often suffers because of
an inability to hold loads constant in maintained
load tests, and because test procedures have long
and short load holding periods which give incon-
sistent degrees of consolidation or creep at the
various stages. It also appears that the longer
loads are held constant at any stage, the greater
are the errors in the measuring system as a result
of factors such as temperature variation. For the
purposes of accurate back-analysis, the settlement
at each load hold should be projected to infinite
time before plotting the points to be used. It is
found that the results of continuous rate of pen-
etration tests can be analysed approximately, but
the stiffness coefficients obtained .are naturally
higher than one obtains from maintained load
tests. It is also clear that, as Burland & Twine
(1988) suggest, ultimate shaft load is increased
with subsequent decline if this test procedure is
followed, so that rather distorted. ultimate load
results are obtained.

The method described has been used both as a
predictive and an analytical tool for maintained
load tests by Cementation Piling Foundations
Ltd for three years. It has proved useful in assess-
ing whether or not piles under test will perform
according to specification, and in discovering
appropriate parameters to use in future designs.
In the analysis mode it is analogous to the signal
matching procedure now used in dynamic load
testing, and it similarly requires a certain degree
of movement to acquire adequate data. Its advan-
tage in comparison with dynamic signal matching
lies in the fact that the dynamic procedure
involves many more parameters and at present
relies on an inferior bilinear model. The following
comments on_the various parameters may be
helpful.

Diameters

The diameters of the shaft and base are regard-
ed as known items (Dg and D). Equivalent diam-
eters can be used for non-circular sections.

Length

The overall length must be known. The com-
ponent L, is the free length or length through fill
or soft alluvial deposits from the pile head. These
soft soils rarely contribute significantly to bearing
capacity. The component L; is the pile length
transmitting load by shaft friction.

Effective column tength factor K¢

This factor converts the length Lg to an effec-
tive free column length. It is necessary first to find
the centroid of friction transfer by calculation.
The friction length down to the centroid should
be multiplied by a factor in the range 0-7-0-8. In
stiff overconsolidated clays, which increase in
stiffness with depth, K, is usually ~0-45.

Shaft flexibility factor M

This is found to vary from 0:004 in soft to firm
or relatively loose soils to ~0-0005 in very stiff
soils or soft rocks. As stated, it lies in the range
that would be expected from Randolph and
Wroth (1978), and decreases with increasing soil
stiffness. In stiff overconsolidated . clays, for
example, it is found to be in the range 0-001-
0-002, although some variations are found, even
on a single site, which appear to be related to pile
type, construction practice, pile straightness and
possibly time-dependent construction processes.

Modulus of soil beneath pile base Eg

Back-analysis shows this to be one of the most
interesting parameters of the method. It is obvi-
ously related to the intrinsic soil properties, but it
is also highly construction dependent. There is a
wide range of choices, depending on whether a
pile is driven or bored, and pile base condition is
very important.

Overconsolidation has an important effect on
most soils. As site investigations as carried out at
present. are more concerned in practice with
strength than with deformation, this factor is not
usually directly determinable. Instead, there are
several attempts in the literature to establish
stiffnesses by correlation with other soil proper-
ties, for example by Meigh (1987), Burland &
Burbridge (1985) and Stroud (1989). These are
helpful in regard to the factors that generally
influence stiffness, but data from a pile loading
test seem to be best, as they also incorporate the
construction factors. Indeed, it would seem highly
desirable to test piles to higher loads and greater
settlements than is done at present in order to
establish all the parameters reliably.

Concrete modulus E

In practical terms it seems highly desirable to
obtain the E. value directly from the material of
the pile. A common figure for concrete piles at the
age of test is ~30 x 10° kN/m?, but with high
strength mixes and excellent curing conditions in
cast-in-place piles, values as high as 50 x 10¢
kN/m? and infrequently higher seem to occur. A
short extensometer or set of extensometers in the
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head region of a pile, but outside the zone of
stress concentration below the load application
level, seems an adequate answer to the problem.
An alternative might be to cast a short dummy
pile nearby, which could be extracted and tested
in a testing press concurrent with pile loading.

Ultimate shaft load Ug

At present, conventional means of calculation
are used for forecasting the ultimate shaft load.
However, back-analysis shows that in reality con-
ventional calculation is usually conservative but
occasionally not so, possibly due to installation
techniques that may alter the surrounding soil
properties. This is particularly likely to happen in
the interglacial sands and silts with certain types
of bored pile.

Ultimate base load Uy

The ultimate base load is also calculated by
conventional means for the purpose of prediction.
Again, using the logical asymptotic definition it
seems from analysis that for deep bases in clay
soils the N factor is slightly higher than the con-
ventional value of 9. Installation method is of
primary importance, particularly for short piles,
which rely heavily on end bearing. For conven-
tional bored piles in such circumstances the
cleaning of bases is important, continuous flight
auger piles behave well given good. construction
techniques, and driven piles obviously densify
cohesionless soils markedly in most cases. The
stiffness of the soil in such circumstances may be
increased by a factor of two or three for a driven
pile, and is often even higher where the technique
of driving bulbs is used. Data on all the param-
eters are currently being collected for a wide
range of pile types and ground conditions; it is
hoped to publish the more important findings in
due course.

Sensitivity

From the equations and Figs 4 and 5 it will
readily be appreciated that the most important
parameters in the early stages of any pile load set-
tlement relationship are the Mg and E. values.
Fortunately, in most cases these parameters have
very limited ranges and have only minor effects
on the ultimate shaft friction, end bearing and
base soil stiffness moduli where movements are
large in back-analysis. The Eg and Uy values
have significantly different effects, and with suffi-
cient settlement data can be separated readily.
The most important consideration is that if piles
are made to settle well beyond the stage where
shaft friction is fully mobilized, potential errors in

all the parameter determinations are greatly
diminished. Using the computer program, it is a
simple matter to investigate sensitivity in any par-
ticular case, and it can easily be appreciated that
sensitivity depends on the relative magnitude of
the parameters in individual situations.

Examples

A large and growing number of field test results
have been examined by this method, and it is
clear that with good data piles in a wide range of
soil conditions follow the calculated form very
closely indeed. At present, most of the piles that
have been examined are of the cast in place type.
Where it is possible to find instrumented pile
tests, the data are ~usually good enough to
confirm that the base alone, the elastic shortening
and the pile as a whole can be‘modelled closely.

The following examples have been selected
from the database of pile tests back-analysed by
the method to illustrate its application in a range
of ground conditions and for cast in place piles of
different types. It is a simple matter when the
database is sufficiently large to use the method for
prediction purposes, as the main parameters are
remarkably consistent with specific ground condi-
tions and installation. The database currently
extends to some 200 cases. All the input data
points used in the examples are taken directly
from site records.

Bored piles in stiff clay soils

Useful information can be found in' Whitaker
& Cooke (1966), which deals with instrumented
tests carried out at Wembley on both straight
shafted rotary bored piles and under-reamed
piles. The paper provides information on the soil
conditions, and although the maintained load
data are given in detail over only part of the total
load settlement curve, the ultimate base and shaft
loads are quite accurately known. Whitaker &
Cooke took a definition of failure as correspond-
ing to about 10% of pile base diameter, and the
ultimate loads were determined by continuous
penetration tests. The data are fuller in some
cases than in others; the maintained load results
for two straight shafted piles have been chosen
for illustration purposes.

In each case the compatibility of the solution
has been checked against the ultimate load given,
and the base/settlement relationship has been
checked independently. These piles were not
made to settle sufficiently during the maintained
load test to give a clear solution for the base from
the overall settlement data, but, usefully, this is
supplemented by records from each pile base,
allowing a full solution to be obtained. The solu-
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Fig. 6. Comparison of results from the
aker & Cooke (1966): pile H

tion given in Figs 6 and 7 is entirely compatible
with all the information supplied. For pile H,
Whitaker & Cooke quoted an ultimate shaft load
of 1960 kN and a base load of 770 kN. These
figures correspond to asymptotic values of 1994
and 1009 kN respectively. For pile N, ultimate
shaft and base loads were given as 3070 and 870
kN; the analysis by this method corresponds to
asymptotic values of 3100 and 1068 kN. The
analysis values correspond closely to the Whit-
aker and Cooke values, if 10% of diameter settle-
ment criterion is taken as defining ultimate load.
The method represents well the performance of
bored piles in stiff overconsolidated clay.

present study with those of Whit-

Under-reamed pile in stiff clay

It is difficult to find results for under-reamed
piles that have been made to settle significantly;
again the work of Whitaker & Cooke (1966) at
Wembley provides an_interesting case. No satis-
factory and straightforward result for the behav-
iour of under-reamed bases at this site could be
found by the matching program until the original
paper was studied more carefully. Pile P has been
taken as an example. The under-reaming tool
produced a dome-shaped upper surface, and did
not at the time conform with usual specification
requirements that the side slope should make an
angle of 60° or more with the under-ream floor.

0y
4
analysis
£ x = input data
E 8k Ds =094 m
= \ D, =094 m
2 \ U, = 3100 kN
3 U, = 1068 kN
2 12k Lo=14m
8 \ L=138m
e ‘ M, = 0-001
\ gh - 13~19852€ +07 Whitaker &
16 \ KC _ 045 Cooke (1966)
e
\ e BaSE
=== Elastic shortening x
20 ] 1 ], ] | ]
0 60 120 180 240 300 360
Load: t

Fig. 7. Comparison of results from the present study with those of Whit-

aker & Cooke (1966): pile N
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Fig. 8. Under-reamed pile P at Wemibiey: base characteristic only

Hence the under-ream was cut, then the shaft was
deepened a little and a second cut was made. This
allowed the composite under-ream to meet the
specification requirement, but inevitably produc-
ed a peripheral surface on which friction could
act. Once friction was allowed a part in base per-
formance, the solution shown in Fig. 8 resulted
for pile base capacity; the consequent solution for
the complete pile is shown in Fig. 9. In the total
solution, the 700 kN of shaft resistance on the
base now appears in the shaft result, and the
overall solution is exactly compatible with that
given by Whitaker and Cooke, bearing in mind
their criterion of approximately 10% of base
diameter for the ultimate condition.

The method can thus represent well the case of
an under-reamed large diameter bored pile in all
its aspects in stiff overconsolidated clay, and can

Cemsolve

expose features of construction that might other-
wise go unnoticed.

Driven piles in dense sand

The examples given in Figs 10 and 11 are from
de Beer, Lousberg, de Jonghe, Wallays & Carpen-
tier (1979). A series of Franki piles, with and
without enlarged bases, were driven through ~8 m
of very soft clay and peat to a penetration of just
over 1 m in very dense sand. The enlarged based
piles were subsequently extracted and-measured,
so the dimensions are fully known.

Although four of these piles have been exam-
ined in detail, two have been chosen to exemplify
the results. Fig. 10 shows the results of analysis
on pile V in the series, a straight-shafted pile. This
pile was cast within a 406 mm steel tube: for the

analysis
E
E x = input data
€ Ds; =094 m
E gl D, = 1-854 m
] U, = 2905 kN
g. U, = 3940 kN
2 Lo=05m
Li=141m
12k M, = 0-0012 )
E, = 53819 Whitaker &
E. = 1-6E + 07 Cooke (1966)
Ko = 0-45
=== Elastic shortening
1 6 | 1 1 1 1 ] 1 L 1
0 100 200 300 400
Load: t

Fig. 9. Under-reamed pile P at Wembley: total pile performance
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Fig. 10. Result of pile load test on a driven cast-in-place pile at Kallo,

near Antwerp

purpose of calculating elastic shortening the steel
area has been converted to equivalent concrete by
the modular ratio method. The ultimate shaft
load was very small and could not be determined
accurately, but the base settlement characteristic
clearly conforms with Fig. 5, the soil modulus Ej
value being approximately 416000 kN/m? and
the ratio Ey/q, being 30.

Pile 2 (Fig. 11) was driven through a slip-sleeve
arrangement and had an enlarged base. The fric-
tion on this pile was effectively removed, and the
soil modulus below the base now appears as
1000 000 kN/m?. Again the form of the result is as
indicated in Fig. 5 (Eg/q, = 79). The method rep-
resents well the performance of driven piles in a
dense sand both for straight-shafted piles and

20
Cemset
analysis

x = input data
Dy = 0324 m
Dy, = 0539 m
Us = 0-01 kN
U, = 2890 kN

40

Displacement: mm

Li=04m

80

Pile 2

Driving tube
406/366 mm dia.

Lo=926m EYT

539 mm dia.

piles with enlarged bases. It is of interest to note
that the stiffness of the base reaction is substan-
tially different: this is much more likely to be due
to construction technique than to natural varia-
tion in the founding layer.

Bored piles in chalk

Figure 12 shows the results of a test on a pile in
chalk at Norwich. This was an instrumented pile,
for which data have kindly been provided by Ove
Arup. The chalk in_this instance has standard
penetration test results of the order of N = 10,
and because the pile was instrumented by the
Building Research Establishment, the base, total
and._elastic shortening characteristics were all

Kallo: pile 2

Pile shaft
T 324 mm dia.

480 mm dia.
e =15mm

100, v L
0

I J, ]
180 240 300

Load: t

Fig. 11. Result of pile load test on a driven cast-in-place pile at Kallo,

near Aniwerp
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Fig. 12. Large diameter pile in soft

measured. Fig. 12 shows the agreement of the
solution with all the data. It will be observed that
although the chalk was generally of relatively
poor quality, the base soil modulus is 84000
kN/m?, and while this value may be due to
harder layers in the soft chalk, there is evidence
that even soft chalks show relatively high
modulus values. The details of this pile are in
Twine & Grose (1989).

Again, the method represents well in detail the
results of an instrumented large diameter pile in
chalk. This chalk was weak according to the site
investigation information, but the end bearing is
higher and the base stiffness is greater than might
have been expected. The elastic shortening is also
well represented. Note that there are several piles
tested in chalk in the database, with chalk

Load: t
chalk

ranging up to very hard, and that very good
matching is possible in all cases.

Pilesin silty conditions

The results of two tests on piles constructed
using continuous flight augers at Shrewsbury in
very complex silty conditions are shown in Figs
13 and 14. These piles are of interest because they
were made to settle a long way under load. Below
some 6 or 7 m of organicsilt and clay there were
layers of very silty sands, clayey silts and silty
clays. Results of Dutch cone tests varied violently
with friction ratios in the range 2—4. These results
and those from standard penetration tests imply
loose to at best medium-dense conditions, with
SPT N values increasing from 8 or 9 at the top to

[eF
Shrewsbury: TP1
Cemset
analysis
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Fig. 13. 750 nmn continuous flight auger pile 27 m long, in Shrewsbury
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Fig. 14. 750 mm continuous flight anger pile, 32 m long, in Shrewsbury

about 20-30 near the pile bases. Groundwater
stood near the piling surface level. Towards.the
lower end of each pile conditions became a little
more sandy, but bands of silty clay and clayey silt
persisted. The area is well known for its difficult
piling conditions..

The results of test loading are of good quality
and show that in spite of the very mixed ground
conditions, end bearing is a more significant com-
ponent of capacity than might have been
expected. The full computer solutions are shown;
again good agreements with the hyperbolic equa-
tion forms are apparent.

These are long piles, and the Young’s modulus
for the concrete may not be exact. If the concrete
modulus is varied it is found to have only a very
minor influence on the resulting load distribution

between shaft and base, using the least squares
curve fitting method contained within the
analysis program for all the variable parameters.
The matching and the values of parameters are
good and stable, particularly in the case of test
pile 2, where the data quality is better.

Pile in weathered Mercia mudstone

Figure 15 shows the results of a test on a con-
tinuous flight auger pile founded in a weathered
Mercia mudstonein the Bristol area. Again the
pile was made to deflect sufficiently to give a
good fix on the various parameters. The soil was
layered with softer and harder bands in the
region of the toe of the pile, but it is evident that
the pile base behaved in accordance with effective

0_
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Cemset
analysis
16
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= Ds=06m
] D,=06m
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Fig. 15. Pile founded in weathered Mercia mudstone
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parameters. Once the parameters are known, it is
necessary only to insert the changes of pile dia-
meter into the equations to discover the likely
performance of contract piles, and whether or not
they will comply with specification.

Internal pile instrumentation is expensive and
there are many cases, such as continuous flight
auger piles, in which full load-recording
equipment cannot at present be inserted to posi-
tions where it would be useful. Subject to the con-
ditions stated, this method would appear to offer
valid results at the reasonably low cost of suffi-
cient load application. Direct measurement of
concrete elastic properties would be a useful and
fairly straightforward addition to the system.

The method has been shown to have many
consequences. The load/deformation performance
of piles is not a matter of random behaviour.

NOTATION
Dy diameter of pile base
Dg diameter of pile shaft
Ey deformation secant modulus for soil
beneath pile base at 25% of ultimate stress
E. Young’s modulus of pile concrete
E, Young’s modulus for any pile material
Ky effective column length of shaft transferring
friction, divided by Lg
intercepts on settlement/load axis when
settlement is plotted against
settlement/load
L, upper length of a pile carrying no load or
low loads by friction
Ly length of a pile transferring load to the soil
by friction
G shear modulus of soil
M; flexibility factor representing movement of
a pile relative to the soil when transferring
load by friction (dimensionless)
N standard penetration test result
P load applied at pile head
Py load applied at pile base
Pg load applied to pile, carried by friction
PT
Us
B

K, Ky

load (P + Pg)applied at pile head
ultimate shaft friction load
ultimate pile base load

compound parameters
. constant (Chin model)
Cy undrained shear strength of clay
fi1 depth factor related to depth of foundation
below ground
m slope of line relating settlement to
settlement/load (Chin model)
q stress due to applied load at pile base
r. pile radius (Randolph model)
r,, radius at which soil deflexions become
vanishingly small (Randolph model)
a adhesion factor
A settlement

Ay settlement of pile base under applied load

Ag total elastic shortening of pile

Ag  settlement of pile shaft under applied load

Ay total settlement of rigid pile under applied
load P

b

3 components of elastic shortening of pile
{ In(ry/r)

v Poisson’s ratio

15 shear stress at pile surface
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DISCUSSION

A new method for single pile settlement prediction and analysis

W. G. K. FLEMING (1992). Géotechnique 42, No. 3, 411-425

T. J. Poskitt, Queen Mary College, University of
London

The state of stress in the soil surrounding a pile
is complex. This is due to the process of install-
ation and subsequent reconsolidation, and also to
the stresses which existed in the soil prior _to
installation, which may not be known. As a
result, when the pile is loaded the settlement is
difficult to predict, and the level of sophistication
which it is sensible to use in theoretical methods
must be matched accordingly. The Author recog-
nizes this. The complex problem of single pile set-
tlement is globally characterized by a few
parameters related to the hyperbolic law, and
these are then found from the load-settlement
curve. The numerous cases which the Author has
successfully analysed give confidence in the
method.

Perhaps the greatest objection to the hyper-
bolic law is the assumption that, irrespective of
soil type or pile make-up a load—settlement curve
when plotted on hyperbolic axes (namely
settlernent/load against settlement) should give a
straight line. To define the hyperbola requires
two parameters, and it is difficult to see how these
relate to the engineering parameters of the pile
and soil.

In the Paper this is partially overcome by the
use of hyperbolic laws for both the shaft and the
base. The four parameters are related to basic soil
constants and the method as presented is a sig-
nificant step forward in the understanding of pile
behaviour. However, a consequence of using two
hyperbolic relations is that the original assump-
tion that load and settlement conform to a hyper-
bolic law is now violated. This is readily seen in
the case of a rigid pile, given by equation (14),
where the graph of A,/Py against A is no longer
linear.

To overcome this problem, the Author suggests
that the first part of the curve be associated with
shaft parameters, while the second is associated
with base parameters. The difficulty with this is
knowing where shaft influence ends and base
influence takes over. This can be seen in the case
study of pile H at Wembley. Using the data in
Fig. 6, and a standard non-linear structural pro-
gramme, the load—settlement curve for this pile
was obtained. This is shown on a hyperbolic plot
in Fig. 16. Over the range of loading considered
by the Author this gives a gentle curve with no

apparent transition from shaft dominance to base
dominance. This appears to conflict with the type
of behaviour indicated by Fig. 1, and so I suggest
that abrupt changes could be due to brittle
behaviour in the soil.

The Paper gives persuasive arguments, mainly
of a practical kind, for collecting together all the
characteristics of shaft behaviour into a single
hyperbolic relationship. I believe a better method
is to represent shaft behaviour in terms of hyper-
bolic load transfer functions. This has been done
in connection with the related problem of finding
the form of dynamiic load transfer functions which
should be used in pile driving studies. The practi-
cal difficulties of taking dynamic measurements
initially led me to study static load-settlement
curves. Several factors arising from these studies
have a direct counterpart in the present Paper.

The first concerns the law used for the basic
load transfer function. In pile driving this is gen-
erally taken as bilinear (Fig. 17). The Author
regards this as an inferior law, but it is necessary
to remember that its use is necessitated by the
practical need to develop simple numerical pro-
cedures for the unloading and reversed loading
ranges. The bilinear law, like the hyperbola,
requires two parameters to define it, one of which
is the ultimate resistance. However, unlike the
hyperbola, this is reached after a finite displace-
ment Q, which is known as the quake. For the
shaft, Q can be associated with MgDyg; for the
base its counterpart is 0-6 Ug/Ey Dy (see Table 1).
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The Author’s comment that Mg does not
appear to be sensitive to_soil type is significant.
This is also found to be the case with quake Q,
which engineers often assume to be 2:5 mm.

The position with regard to the factor
0-6 Ug/Eg Dy is less well defined. Table 1 shows
this to be more sensitive than Mg Dy to soil type. I
think that this is a consequence of the end resist-
ance continuing to increase with displacement
and therefore showing no_tendency to approach a
horizontal asymptote. This has implications for
the values of end quake currently assumed in pile-
driving analyses.

I should like to comment on the influence of
shaft flexibility. The method devised by Poskitt &
Ward (1988) has some similarities with that pro-
posed. by the Author, but proved to be ill-
conditioned. As a result, the parameters obtained
from back-analysis of field data were found to be
sensitive to small changes in the data. From this I
concluded that it was necessary to treat the pile
and soil as a properly formulated non-lingar
structural system and solve it accordingly. By
comparison, the Author’s formulation appears to
be well conditioned, and it is not immediately
apparent why this should be so. Nevertheless, the
efficacy of the method seems beyond doubt and
the parameters obtained in the examples are

Table 1. Load test parameters
Site MgDg:mm | 06Uy/EgDy:mm

Wembley H 1-32 234
Wembley N 094 21-4
Wembley P 113 237
Kallo 5 0-57 6-4
Kallo 2 0-32 32
Norwich 1 0-92 23-4
Shrewsbury TP1 0-90 13-6
Shrewsbury TP2 0-71 91
Bristol 0-42 355

acceptable whether they are interpreted for load
testing or for the less usual application of quake
in pile-driving calculations.

M. Maugeri, F. Castelli and E. Motta, University
of Catania, Italy

To evaluate non-linear single pile settlement,
the Author uses the hyperbolic load-transfer func-
tion proposed by Chin (1970) which we used to
present a computer code based on a pile finite
element discretization which takes into account
the non-linearity of the soil-pile interaction
(Castelli, Maugeri & Motta, 1992). We also pro-
posed a simplified procedure in a closed form
similar to that proposed by the Author.

The computer code was used to back-analyse
12 loading tests of bored piles. Numerical analysis
was carried out on instrumental full-scale pile
tests, collected from existing literature. The piles
were bored in clayey, silty, sandy and pyroclastic
soils, ranged between 14 m and 42 m long and
had diameters ranging between 0-42 m and 2 m.
Assuming a hyperbolic load-transfer function, the
back-analysis was performed with the aim of
deducing the most appropriate values of the main
parameters. The_ shaft flexibility factor can be
evaluated using Mg = 0-001-0-002 when the unit
ultimmate skin friction is greater than 50 kPa and
Mg = 0-002-0-005 when the unit ultimate skin
friction is less than 50 kPa. These values are very
close to those given by the Author when applying
the Randolph and Wroth theory (1978).

The Author suggests evaluating the contribu-
tion of the settlement due to the elastic shortening
by three stages A,, A, and A;. An alternative
procedure could be to assume the soil to be
homogenecous and to evaluate the elastic short-
ening in one stage, considering two laws of soil-
pile interaction—along the pile shaft and at the
base—with different stiffnesses. This gives the
second order differential equation

Y —oly=0 (22)

where y is the settlement at depth z and «? is
given by

o? = 4K, /E, nD? (23)

where K is the stiffness of the lateral load-
transfer function and D is the pile diameter. With
the boundary conditions

DZ
E " V(O = —P; 24)
nD?
E. 3 YW)= —(Pr— P = — K, L) (25)
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where K, is the stiffness of the load-transfer func-
tion at the base and L is the total length of the
pile, the following equation can then be derived
for the elastic shortening

A, = C(4P/aE nD?) (26)
where
_ el +p)+e 1 —p—2
(1 + f) —e™*(1 — )
B = 4Kp/aE-nD? (28)

To consider the non-linearity of the load—
settlement curve, the value of K; must be chosen
depending on the load level

(27)

K, = Kiy(l —n) (29)
where Ki, is the stiflness at the origin and
n = P4/(Us + Up) (30)

Thus this procedure, which takes into account
both the shaft and base interactions as well as the
load level, also shows the non-linearity of the
elastic shortening.

Values of Ki; may be derived as Ki =
Ug/M¢ D, and the following approximate relation-
ship, deduced from parametric back-analysis, can
be used to calculate Kp

(9./K,D) =003 (31)

where ¢, is the point resistance deduced from
static penetration testing.

Figures 18 and 19 compare the head settle-
ments evaluated using the Author’s procedure
with ours for piles H and N (Whitaker & Cooke,
1966). Both procedures were also applied in one
of the 12 loading tests (Viggiani & Vinale, 1983),
which was used for the back-analysis, as shown in
Fig. 20. All the results show good agreement
between measured and computed settlements,
irrespective of the procedure used.

For the Viggiani & Vinale (1983) pile, Fig. 21
shows the elastic shortening A, derived from
equations (26)—(31) compared with that derived
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Fig. 18. Evaluation of total settlement for pile H
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Fig. 19. Evaluation of total settlement for pile N

from equations (17)—(21). Although our procedure
predicts a non-linear elastic shortening and the
Author’s predict a linear one, the results are in
good agreement. The main difficulty in applying
these methods is in the correct determination of
the function parameters. If it is possible therefore
for the load-transfer function to be characterized
accurately by using a simplified procedure, ana-
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lytical results will show good agreement with full-
scale pile tests.

Author’s reply

Since the Paper was written the routine use of
the method for the analysis and prediction of
single pile settlements and further research on it
has been proceeding and the database has been
widened to more than 500 case studies without
any significant problems having arisen. Research
has also been carried out on unloading recovery
and it now appears that the maximum value of
this can be predicted by a further extension of the
same mathematical functions. This also shows

DISCUSSION

how locked in stresses are produced after
unloading in a pile. Other developments associ-
ated with the method have also been published
(Fleming, 1992, 1993; England, 1992).

With regard to the violation of the single
hyperbolic relationship when two hyperbolic
functions are added for a given deformation, this
is indeed inevitable. It is easy to demonstrate
mathematically and largely explains the frequent
ambivalence of engineers towards the plotting
method. Tables 2-4 illustrate the problem. In
Table 2 a hyperbolic shaft function characteristic
for a rigid pile is shown. A similar characteristic
for a pile base alone is shown in Table 3, and in
Table 4 these are mathematically added together

Table 2. Rigid pile with Dg = 1 m, Us = 2000 kN, M = 0002

Applied load: kN Settlement: mm Settlement/load Interval slope:

x 10° kN

181-81 02000 1:100 —
2000

400 0-5000 1-250 —
2000

620-69 0-9000 1-450 —
2000

800 1-3333 1-6667 —
2000

1000 2-0000 2-000 —
2000

1200 3-0000 2-500 —
2000

1428-58 5-0000 3-500 —
2000

1600 8-0000 5-000 —
2000

1800 18-0000 10-000 —

Table 3. Rigid pile with Dy =1 m, U,

base soil modulus)

= 1000 kN, E = 50000 kN/m? (E,

Applied load: kN Settlement: mm Settlement/load Interval slope:

x 10% kN

16-39 0-2000 12-20 —
1000

40 0-5000 12-50 —
1000

69-77 0-9000 12-90 —
1000

100 1-3333 13-33 —
1000

142-86 2-0000 14-00 —
1000

200 3-0000 15-00 —
1000

294-12 5-0000 17-00 —
1000

400 8-0000 20-00 —
1000

600 18-0000 30-00 —




DISCUSSION

619

Table 4. Rigid pile with Dg=1 m, Dy =1 m, Uy = 2000 kN, M, = 0002,

U, = 1000 kN, E, = 50 000 kN/m?

Applied load: kN Settlement: mtm Settlement/load Interval slope:

x 103 kN

198-2 0-2000 1-00908 —
2356-9

440 0-5000 1-13636 —
2393-5

690-46 0-9000 1-303479 —
2434-2

900 1-3333 1-4815 —
2482-9

1142-86 2-0000 1-7500 —
25452

1400 3-0000 2:1429 —
2633-3

17227 5-0000 2-9024 —
2733-2

2000 8-0000 4-0000 —
2857-1

2400 18-0000 75000 —

for given settlements. The result, considering
slope over the selected settlement intervals,
clearly shows that the relationship A/P; against
Ay is no longer linear. It is undoubtedly true that
in order to represent pile behaviour adequately,
the functions representing the shaft and base,
which are individually hyperbolic, have to be
dealt with separately and subsequently combined
to represent the whole pile. The method advo-
cated by Chin (1970), for example, works well for
piles which have nearly all their load carried
either by shalft friction or end bearing, but is dis-
appointing when these components act together
and are nearly equal.

On the subject of quake in pile driving, where
elastic shortening is restricted to that within the
wave front and where volumetric strain along the
shaft length is slight, it seems highly probable
that quake Q is directly related to Mg D. Studies
on base behaviour under impact seem to show
that the stiffness E; approaches a limiting value
of the stiffness of water (Ez =2 x 10° kN/m?),
which might not be entirely unexpected in fully
saturated soils.

With regard to the question of the elastic short-
ening model, at an early stage other forms of
analysis using the same basic functions were con-
sidered but it was decided to use the method in
the Paper because it is straightforward, easily
understood, and may be used as an everyday
design and analysis tool. The elastic shortening
model has since been refined for analysis pur-
poses and the further suggestion of Messrs
Maugeri, Castelli and Motta is welcomed. For
design purposes, however, the more refined tech-
niques make slight differences and are scarcely

necessary, as Figs 18-21 imply. The model used
for elastic shortening in the Paper actually pro-
duces a bilinear model which changes slope at the
point where all shaft friction has been mobilized.

The values for Mg shown in the Paper are now
borne out, at least for the stiffer ranges of soil, by
a wealth of practical experience.
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